1. Štetni uticaji elektromagnetnih polja na ljudski organizam

1.1 Definicije i izvori

Još od početka korišćenja električne energije početkom 20 veka do danas elektromagnetna polja koje je čovek uvodenjem novih tehničkih uređaja proizvodio su se pojačavala. Uvođenje novih tehnologija sa jedne strane i promene ljudskih navika sa druge strane dovode sve većeg broja različitih izvora elektromagnetnih polja. Stoga je svaka osoba izložena složenom dejstvu različitih slabih elektromagnetnih polja na poslu i kod kuće, od primene elektroenergetičkih uređaja, preko primene računara, korišćenja mobilnih telefona i primene radio i televizijskih uređaja na principu prenosa signala elektromagnetnim putem. Od samog početka korišćenja električne energije pojavile su se sumnje u moguć štetne posljedice dejstva elektromagnetnih polja na ljudski organizam. Stoga su uporedo radjena eksperimentalna medicinska istraživanja na ljudima i životinjama, kao i praćenje osoblja koje radi u visokonaponskim postrojenjima i na radnom mestu je izloženo povećanim električnim i magnezijnim poljima. Do sada nisu pronađeni nikakvi čvrsti dokazi da postoje povezanost izmedu pojava određenih bolesti i izloženosti elektromagnetnom zračenju u normalnim eksploatacionim uslovima elektroenergetičkih postrojenja i vodova do 400 kV.

Ovaj materijal nastao je na bazi preporuka svetske zdravstvene organizacije (World Health Organisation, u daljem tekstu WHO, koji je izrađen na osnovu studije započete 1996 god pod nazivom Međunarodni elektromagnetni projekat (International EMF project) sa ciljem da se istraže efekti elektromagnetnih polja frekventnog opsega od 0 Hz do 300 GHz na zdravlje. Jedan od rezultata istraživanja objavljen je 1999 god. na osnovu kojeg je nastao ovaj tekst.

1.2 Prirodni izvori elektromagnetnih polja

U prirodi postoje elekttrična i magnetna polja na koje čovek nema uticaja. U toku lepog vremena javlja se prirodno električno polje između jonosfere i zemlje, čiji je intenzitet na zemljinoj površini na nivou mora iznosi prosečno E=120 V/m i opada sa visinom. Ovo polje je spor promenljivo i zato se zove statičko električno polje. Za vreme grmljavinskih nepogoda javlja se električno polje suprotnog polariteta koje može da bude više stotina puta jače od polja lepog vremena. Ovo električno polje je relativno spor promenljivo do trenutka kada se dogodi atmosfersko pražnjenje, kada dolazi do pojave elektromagnetnih polja visoke učestanosti.

Magnetno polje zemlje takodje spada u statičko polje koje se spor promenja. Intenzitet geomagnetne indukcije je u prosjeku B=30 μT. Svi živi organizmi, pa i čovek, su potpuno adaptirani na prirodna električna i magnetna polja.

1.3. Veštak izvori elektromagnetnih polja

Sa razvojem tehnike pri korišćenju različitih uređaja pojavljuje se elektromagnetna polja koja mogu imati različite frekvencije, od veoma visokih frekvencija rengenskih zraka koji
Pošto ljudi ne mogu da služe za eksperimene, rezultati se baziraju na eksperimentima na životinjama. Prilikom određivanja smernica koristi se faktor sigurnosti, koji je čak kod smernica ICNIRP iznosi 10 da bi se odredile smernice za zaposlene i faktor 50 za ostalo stanovništvo. Manji faktor sigurnosti za zaposlene se koristi zbog toga što oni znaju za štetne efekte i mogu preduzeti određene mere zaštitite. Osim toga, radi se uvek o odraslim osobama u punoj životnoj snazi, za razliku od ostalog stanovništva koje obuhvata decu, stare, trudnice i bolesne.

Važno je da nivo indukovanih struja u organizmu usled elektromagnetnih polja bude značajno niz niži od nivoa struja bio-hemijskih procesa u organizmu. Što se tiče radiofrekventnih polja, glavni cilj je da se spreči efekat zagrevanja kompletnog organizma.
toga se mora proučavati raspodela zagrevanja usled pojačanog zračenja samo unutar glave. Na osnovu dosadašnjih kompjutorskih proračuna se zaključuje da zračenje mobilnih telefona ne premašuje dozvoljene granice. Do sada nije dat nijedan rezultat koji eksplicitno može da ukaže na štetan efekat mobilnih telefona na zdravlje.

Važeci standardi: Standardi služe da se definisu granice iznad kojih se može smatrati da nije ugroženo zdravlje ljudi izloženo utjecajima iz čovekovog okruženja. Svaka zemlja ima svoje nacionalne standarde za izloženost elektromagnetskim impulzima. Ipak, većina država se drži smernica koje daje Međunarodna komisija za zaštitu od neizolirajućih zračenja (International Commission on Non-Ionizing Radiation Protection ICNIRP). Ova nevladina organizacija je formalno prepoznata od WHO, i ona sakuplja naučne rezultate iz celog sveta. Na osnovu detaljne analize rezultata iz celoga sveta ova organizacija daje smernice, koje se periodično osavremenuju.

Elektromagnetni dozvoljeni nivoi menjaju se sa frekvencijom na veoma složen način. U tabeli 1.8.3 date je pregled smernica za dozvoljene granične vrednosti za tri opsega frekvencija, jer listanje po svim frekvencijama bi bio veoma zametan i nepregledan posao. U tabeli se daju one oblasti koje su sa stanovišta javnog mnenja najinteresantnije. To su elektromagnetna zračenja u domaćinstvu od uređaja koji koriste napajanje naponom industrijske frekvencije, mobilni telefoni i mikrotalasne pećnice.

Tabela 1.8.3: Granične vrednosti elektromagnetnog zračenja u domaćinstvima

<table>
<thead>
<tr>
<th>Učestanost</th>
<th>Električna polje (V/m)</th>
<th>Magnetna indukcija (μT)</th>
<th>Gustina snage (W/m²)</th>
<th>Gustina snage (W/m²)</th>
<th>Gustina snage (W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.45 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Granična izloženost stanovinarstva
- 5000
- 100
- 4.5
- 9
- 10

Granična izloženost zaposlenih
- 10000
- 500
- 22.5
- 45

Smernice su preuzete iz ICNIRP guidelines, Health Physics 74, 494-522 (1998)

Ove smernice se razlikuju ponekad čak za faktor veći od 100 u pojedinim zemljama bivšeg SSSR i zapadnih zemalja. Zbog globalizacije trgovačkih i sa rapidnim širenjem telekomunikacija smernice se moraju ujednačiti.

Smernice nisu precizno razgraničenje između nivoa bezbednog zračenja i onoga nivoa koji je štetan. Pošto se rizik oštećenja zdravlja postepeno povećava sa porastom nivoa zračenja, smernice daju najniži nivo za koji se može smatrati da je bezbedan za čovekovo zdravlje. To ne znači da će odmah iznad tog nivoa zračenje biti štetno. Naučna istraživanja se trude da otkriju prag kada počnu da se pojavljuju prvi zdravstveni efekti.
Tabela 1.8.2: Tipične vrednosti magnetne indukcije u domaćinstvu

<table>
<thead>
<tr>
<th>Magnetna indukcija u blizini električnih aparata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uredaj</td>
</tr>
<tr>
<td>Fen za kosu</td>
</tr>
<tr>
<td>Električni brijač</td>
</tr>
<tr>
<td>Usisivač</td>
</tr>
<tr>
<td>Fluorescentna svetiljka</td>
</tr>
<tr>
<td>Mikrotalasna rerna</td>
</tr>
<tr>
<td>Portabil radio</td>
</tr>
<tr>
<td>Električna rerna</td>
</tr>
<tr>
<td>Mašina za pranje veša</td>
</tr>
<tr>
<td>Pegla</td>
</tr>
<tr>
<td>Mašina za pranje suđa</td>
</tr>
<tr>
<td>Komputer</td>
</tr>
<tr>
<td>Frižider</td>
</tr>
<tr>
<td>Kolor TV</td>
</tr>
</tbody>
</table>

Dozvoljena vrednosti magnetne indukcije u domaćinstvima za stanovništvo koje boravi u tom prostoru 24 h je 100 μT.

Dešava se da magnetno polje pojedinih kućnih potrošača varira u širokim granicama u zavisnosti od konstrukcije i proizvođača. Tamnim slovima su označna ona rastojanja na kojima se korisnik nalazi u tipičnim slučajevima korišćenja aparata.

Kod električne vuče motor i kompletni napojni sistem su postavljeni ispod poda vozila, tako da polje iznad poda ima malu vrednost i jako brzo opada sa većim visinom posmatranja.

Uticaj mobilnih telefona: Kad su u pitanju mobilni telefoni, razlikujemo zračenje baznih stanica i zračenje samih prijemnika. Sistem mobilne telefonije je koncipiran na gustoj mreži baznih stanica male snage čije su antene podignute na visoke stubove. Bazne stanice mogu međusobno biti udaljene od par stotina metara u urbanim sredinama do par kilometara u ruralnim sredinama. Antene emituju uzani snop radiotalasa koji se prostire gotovo paralelno zemljinoj površini. Antene su podignute na visinu od 15 do 50 m. Zbog toga su radio-zračenja na nivou zemlje na javnim mestima izložena veoma slabom zračenju. Dozvoljena granica zračenja može biti prevazidena samo ako se pojedinac približi na metar ili dva direktno ispred antene. Manje je stanovništvo bilo izloženo uglavnom radiofrezventnim talasima iz radio i televizijskih antena, a danas je na to zračenje dodato zračenje baznih stanica koje je istog reda veličina kao i TV i radio zračenje.

Korisnik mobilnog telefona je izložen značajno jačem zračenju od onoga koje generalno postoji u okruženju. Razlog je što mobilni telefon funkcioniše veoma blizu glave. Zbog
Tabela 1.8.1: Tipične vrednosti električnog polja u domaćinstvu

<table>
<thead>
<tr>
<th>Uređaj</th>
<th>Intenzitet električnog polja (V/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereo prijemnik</td>
<td>180</td>
</tr>
<tr>
<td>Pegla</td>
<td>120</td>
</tr>
<tr>
<td>Frizider</td>
<td>120</td>
</tr>
<tr>
<td>Mikser</td>
<td>100</td>
</tr>
<tr>
<td>Toster</td>
<td>80</td>
</tr>
<tr>
<td>Fen za kosu</td>
<td>80</td>
</tr>
<tr>
<td>Kolor TV</td>
<td>60</td>
</tr>
<tr>
<td>Automat za kafu</td>
<td>60</td>
</tr>
<tr>
<td>Usisivač</td>
<td>50</td>
</tr>
<tr>
<td>Električna rerna</td>
<td>8</td>
</tr>
<tr>
<td>Klasična stilalica</td>
<td>5</td>
</tr>
</tbody>
</table>

Granična vrednost električnog polja industrijske frekvencije za stanovništvo koje je stalno izloženo električnom polju je 5000 V/m.

Za razliku od električnog polja, magnetno polje u domaćinstvima može da bude jače nego ono koje nastaje usled dejstva visokonaponskih vodova. Ovo se objašnjava činjenicom da su struje koje konzumiraju potrošači u domaćinstvu relativno velike, a rastojanja mala, pa je zbog toga uticaj magnetnog polja veći. Na primer, u slučaju nadzemnog voda nazivnog napona 400 kV i kućnog potrošača 230 V napon visokonaponskog voda je 1740 puta veći od napona kućnog potrošača. U slučaju nadzemnog voda ako kroz fazi provodnik protiče struja od 1000 A, a kućni potrošač snage 2300 W povlači struju od 10 A, tada je odnos struja samo 100. Sa druge strane, dozvoljena udaljenost od visokonaponskog nadzemnog voda je neuporedivo veća u odnosu na kućne potrošače, koji su u neposrednoj blizini. Iz tog razloga u domaćinstvima je dejstvo magnetnog polja ili magnetne indukcije mnogo značajnije od dejstva električnog polja.

U tabeli 1.8.2 prikazane su tipične vrednosti magnetne indukcije u domaćinstvu.
Ispitivanja na životinjama su bliža realnim životnim situacijama. Ova laboratorijska istraživanja služe da se direktno sagledaju dozvoljeni nivoi zračenja koji mogu kasnije da se ekstrapoliraju na ljudje, stim što se moraju promjenjivati različiti nivoi i ukupne doze zračenja da bi se utvrdile određene relacije.

Epidemiološka istraživanja, onosno istraživanja zdravstvenog stanja po grupama ljudi koji imaju neke zajedničke karakteristike pretpostavlja direktn metod za praćenje dugotrajnih efekata izlaganja uticaju elektromagnetnih talasa, kao i incidencije pojedinih bolesti sa štetnim uticajima. Epidemiološke studije su skupe, zahtjevaju određena merenja na velikim uzorcima populacije, a pri tome treba pratiti vrlo male zdravstvene efekte.

Na osnovu sve tri grupe istraživanja se mogu doneti relevantni zaključci o štetnim uticajima elektromagnetnih polja, ali je izuzetno komplikovano dati određene dozvoljene nivoje. Sama epidemiološka istraživanja obično ne mogu da uspostave direktno uzročno-posledičnu vezu između delovanja nekog agensa i određene bolesti, najviše zbog toga što se može uspostaviti samo statistička veza između nekog uzroka i posledice. Čak i uspostavljanje statističke veze između uzroka i posledice može biti netačno zbog malog uzorka ili zbog statističkog rasipanja rezultata.

U slučaju jakih efekata, kada su vrlo jasni statistički pokazatelji, kao na primer kod povezanosti pušenja sa kancerom, jasni su epidemiološki rezultati. Međutim, kada su efekti slabi, veoma je opasno donositi zaključke. Na primer, kod nas je objavljen slučaj dečje leukemije kod deteta koje živi u blizini visokonaponskog voda. Jedan slučaj može biti izuzvan vrlo različitim uzorcima, a neoznato je koliko dece živi pod potpuno istim uslovima, a nije se razbolelo.

Budući rad: Međunarodni projekat proučavanja dejstva elektromagnetnih polja služi da inicira i koordinira istraživanja širom sveta da bi dobili pouzdan odgovor na pitanje javnosti o uticaju elektromagnetnih polja na zdravlje.

1.8 Elektromagnetna polja po domaćinstvima

Najjače električno polje industrijske frekvencije se javlja ispod visokonaponskih vodova, dok su električna polja po domaćinstvima značajno slabija. U tabeli 1.8.1 datu su tipične vrednosti električnih polja od kućnih aparata na rastojanju od 30 cm iz federalne kacelarije za sigurnost od radijacije (Federal Office for Radiation safety), Nemačka 1999 god.
poljima i obolevanja. Naprotiv, neki drugi činjenici su jasno pokazivali povezanost sa povećanim rizikom obolevanja. Do ovakvog zaključka se došlo između ostalog i zbog toga što eksperimenti na životinjama nisu pokazali rezultate koji se mogu ponoviti i koji su dovoljno konzistentni da potvrde hipotezu da elektromagnetna polja mogu da izazovu ili olakšaju nastajanje kanceru. Masovna istraživanja koja se vrše u više zemalja bi trebala da pomognu da se ovaj problem razreši.

Elektromagnetna polja, hipersenzitivnost i depresija

Pojedine izveštavaju da imaju «hipersenzitivnost» na elektromagnetna polja. Oni sumnjuju da bolovi, glavobolje, depresija i letargija, poremećaji sna, pa čak i grčevi i epileptički napadi mogu biti povezani sa prisustvom elektromagnetnih polja u okruženju.

Veoma je malo naučnih rezultata koji bi podržavali ideju o postojanju hipersenzitivnosti u odnosu na prisustvo elektromagnetnih polja u čovekovoj okolini. Najnovija ispitivanja u Škandinavskim zemljama ne pokazuju konzistentne reakcije na potpuno kontrolisano izlaganje elektromagnetnom polju. Nije ustanovljen nijedan biološki mehanizam koji bi objasnio hipersenzitivnost. Istraživanje na ovu temu je komplikovano zbog mnogih subjektivnih reakcija koje mogu biti izazvane različitim uzrocima nezavisnim od dejstva električnog polja.

Fokus današnjih i budućih istraživanja: Trenutno se ulaže veliki napor na istraživanja mogućeg kancerogenog dejstva elektromagnetnih polja. Ova istraživanja se rade u nešto manjem obimu nego što su radena kasnih 90 godina prošlog veka.

Dugoročni uticaj na zdravlje zbog korišćenja mobilnih telefona je danas važna oblast istraživanja. Do sada nikakav jasan nepovoljan efekat nije uočen usled elektromagnetnog polja radiofrekvenčijoskog opsega niskog nivoa. Ipak, zbog velike pažnje javnosti nastavljaju se istraživanja da li se možda javljaju neki efekti koje je teže uočiti pri niskim nivoima eksponiranja ovoj vrsti zračenja.

Potreba za različitim studijama: Da bi se sagledala potencijalna opasnost od elektrogenetni zračenja, potrebna su kompleksna istraživanja koja obuhvataju više oblasti.

- Laboratorijanska ispitivanja na čelijama radi razjašnjenja fundamentalnih mehanizama koji povezuje dejstvo elektromagnetnih polja i procese unutar čelija. Potrebno je da se identifikuju procesi na nivou molekularnih ili čelijskih promena koji čine ključ za utvrđivanje veze između fizičkog delovanja koja dovodi do biološke reakcije. U ovim istraživanjima se žive čelije uzimaju iz organizma i stavljuju u takvo okruženje da mogu da opstanu i vrše ispitivanja.
sistematozvala i koordinisala. Svjetska zdravstvena organizacija WHO je inicirala 1996. god veliki multidisciplinarni projekat kojim se koordinira rad sa ključnim međunarodnim i nacionalnim agencijama u cilju dobijanja zbirnih rezultata istraživanja rađenim u više zemalja. Objavljeno je preko 25000 radova u zadnjih 30 godina na ovu temu.

Prema zaključcima WHO nije evidentirano da postoje posljedice delovanja elektromagnetnih polja koja postoje usled normalnog korišćenja električnih uređaja i usled prisustva visokonaponskih prenosnih vodova i postrojenja na ljudsko zdravlje.

Generalni efekti na zdravlje: Pojavljivala su se zapažane veoma različitih simptoma usled delovanja niskih doza elektromagnetnih polja u domovima. Zabeleženi su simptomi kao što su glavobolja, nervozna, depresija i samoubilački nagoni, muka, iznurenost i gušta ljubide. Do danas nisu potvrđene nikakve povezanosti s ognjenih simptoma sa dejstvom elektromagnetnog polja. Bar neki od navedenih problema mogu biti izazvani bukom ili nekim drugim faktorima iz okruženja, kao i napetostu zbog prisustva novih tehnoloških uređaja u okruženju.

Efekti na trudnice: Kompletna evidencija koja je do sada sprovedena nije utvrdila povezanost izloženosti elektromagnetskim poljima intenziteta koji je tipičan za okruženje u kojem živimo i povećanje rizika od bilo kojih poremećaja kao što su spontani pobačaji, deformiteti, mala telesna težina po rođenju i urođenih bolesti. Ponekad su se pojavljivali izveštaji o povezanosti između zdravstvenih problema kao što je prevremeno rađanje i mala telesna težina i sumnje na izloženost elektromagnetskom polju kod dece radnica u elektronskoj industriji, ali se u naučnoj javnosti ovakvi izveštaji ne smatraju pouzdanim dokazom o štetnom dejstvu elektromagnetnih polja na trudnice. Naprotiv, u slučaju drugih faktora kao što je izlaganje štetnim rastvorima utvrđena je jasna povezanost.

Katarakta: Opša iritacija oka i katarakta se ponekad prikazuju u izveštajima kod radnika koji rade u okruženju radio-frekventnog i mikrotalasnog polja visokog intenziteta. Ispitivanja na životinjama nisu potvrđila povezanost ovakvih oštećenja oka sa nivoima zračenja koji su ispod nivoa koji izaziva opasne termičke efekte. Ovakvi efekti nisu zabeleženi kod populacije koja je izložena elektromagnetskim poljima iz normalnog okruženja.

Elektromagnetska polja i kancer: I pored velikog broja istraživanja rezultati su krajnje kontraverzni. U svakom slučaju je jasno da čak i ako postoji neki efekat elektromagnetnog polja na povećanu verovatnoću bolevanja od kancer, povećanje rizika je veoma malo. Dosadašnja istraživanja, iako veoma obimna, nisu potpuno konzistentna, ali ipak niti jedno istraživanje nije jasno i nedvosmisleno ukazalo na značajno povećanje broja obolelih od bilo koje vrste raka kod odraslih i dece usled dejstva elektromagnetnog polja.

Sproveden je veliki broj epidemioloških studija, od kojih su neke ukazale na malo povećanje rizika dječje leukemije prilikom izlaganja niskofrekventnim magnetnim poljima kod kuće. Ipak, naučnici još nisu potvrdili da ovi rezultati mogu da ukažu na uzročno-posljeđičnu vezu između izloženosti slabim niskofrekventnim magnetnim
Slika 1.4.7: Raspodela magnetne indukcije okomito u odnosu na osu voda

U slučaju magnetnog polja pojavljuje se maksimalna vrednost magnetne indukcije ispod provodnika u iznosu od 7.9 μT, da bi opala na 0.94 μT na rastojanju od 30 m.

Opadanje magnetne indukcije je brže u slučaju kontaktnog voda nego u slučaju trofaznog voda visokog napona. Međutim, pošto se radi o potpuno različitoj geometriji, jako je komplikovano vršiti direktna poređenja.

1.6 Fizički efekti električnog i magnetnog polja niskih frekvencija

Niskofrekventno električno polje fizički deluje na živi organizam na potpuno isti način kao što deluje na bilo koju drugu provodnu materiju. Pošto se živim organizam može smatrati sa se sastoji od elektrolita, smatra se provodnim telom. Pri delovanju električnog polja dolazi do promene raspodele nanelektrisanja na površini organizma, što prouzrokuje proticanje struje kroz organizam ka zemlji.

Niskofrekventno magnetno polje fizički deluje na živi organizam tako što izaziva indukovanje vihornih struja unutar organizma. Intenzitet vihornih struja zavisi od intenziteta promenljivog magnetnog polja koje deluje na organizam. U slučaju jakih električnih ili magnetnih polja moglo bi doći do stimuliranja nervnih i mišićnih čelija i drugih veoma negativnih efekata na organizam. Na sreću, intenzitet električnog polja i magnetne indukcije u domaćinstvima i u blizini visokonaponskih vodova i postrojenja je daleko niži od praga osetljivosti mišićnih i nervnih čelija i zato nema efekta na organizam.

1.7. Opasnost po zdravlje usled delovanja nejonizujućih elektromagnetnih polja

U svetu postoji zabrinutost zbog eventualnih zdravstvenih problema koji mogu nastati zbog uticaja elektromagnetnih polja na organizam. Da bi istraživanja iz ove oblasti
Kada se radi o kontaktnim vodovima električne vođe naizmeničnog napona 25 kV frekvencije 50 Hz, koja se kod nas koristi, tada se ima suprotna situacija. Pošto se radi o monofaznom vodu kod koga je povratni put kroz zemlju, ne dolazi do poništenja ni električnog ni magnetnog polja, pa se utiču osećaju na većoj daljini.

Uradjen je primer za električnu lokomotivu ASEA čija je snaga 3400 кВ, a nazivni napon 25 kВ. Nazivna struja je I=3400/25=136 A. Nazivna visina kontaktnog provodnika je 5,5 m.

Na slici 1.4.6 prikazana je raspodela električnog polja ispod kontaktnog voda visine 5,5 m.

Slika 1.4.6: Raspodela električnog polja ispod kontaktnog voda

Sa slike se može vidjeti da električno polje opada sa vrednosti 1,2 kВ/m ispod provodnika na vrednost 0,031 kВ/m na rastojanju od 30 m.

Na slici 1.4.7 prikazana je raspodela magnetne indukcije okomito u odnosu na osu voda.
Slika 1.4.4: Raspodela električnog polja u funkciji rastojanja kod horizontalnog rasporeda provodnika nadzemnog voda 400 kV

Sa slike se može videti da električno polje opada sa vrednosti 8.7 kV/m ispod krajnjih faznih provodnika na vrednost 0.36 kV/m na rastojanju od 30 m.

Na slici 1.4.5 prikazana je raspodela magnetne indukcije za slučaj istog voda, kada su sve tri faze bile opterećene sa 1000 A.

Slika 1.4.5: Raspodela magnetne indukcije u funkciji rastojanja kod horizontalnog rasporeda provodnika nadzemnog opterećenog sa 1000 A

U slučaju magnetnog polja pojavljuje se maksimalna vrednost magnetne indukcije ispod srednjeg faznog provodnika u iznosu od 40 μT, da bi opala na 3 μT na rastojanju od 30 m.
\[Q_A = C_F \cdot u_A \]
\[Q_B = C_F \cdot u_B \]
\[Q_C = C_F \cdot u_C \] (1.4.2)

gde za simetričan sistem trenutne vrednosti napona imaju sledeću vremensku promenu:
\[u_A = U_m \cos(\omega t + \phi) \]
\[u_B = U_m \cos(\omega t - \frac{2\pi}{3} + \phi) \] (1.4.3)
\[u_C = U_m \cos(\omega t + \frac{2\pi}{3} + \phi) \]

U slučaju simetričnog trofaznog sistema napona zbir napona po fazama je u svakom trenutku jednak nuli.
\[u_A + u_B + u_C = 0 \] (1.4.4)

U izrazu (1.4.2) napravljena je pretpostavka da na formiranje električnih opterećenja na pojedinim fazama ne utiču šusedne faze, uvođenjem samo kapacitivnosti pojedinih faza prema zemlji \(C_F \) i zanemarenjem međufaznih efekata, što nije u potpunosti tačno, a pojednostavlja fizičko objašnjenje pojava.

Sa slike 1.4.3 se vidi da ako je čovek u položaju 1, kada je ratojanje od voda veće, tada su relativne razlike u rastojanjima pojedinih faza manje i rezultatno polje usled dejstva sve tri faze simetričnog trofaznog sistema se poništava. Za bliska rastojanja (položaj 2) dominira uticaj najbliže faze, pa je rezultatno polje znatno jače. Zbog toga kod trofaznih vodova električno polje mnogo brže opada sa rastojanjem nego u slučaju jednostrukog provodnika.

Potpuno isti zaključci važe i za magnetnu indukciju, koja kod linijskog provodnika može da se izračuna na osnovu izraza za jedan beskonačno dugačak provodnik:
\[B = \frac{\mu_0 I}{2\pi r} \] (1.4.4)

Može se uočiti da magnetna indukcija takođe opada obrnuto srazmerno rastojanju, ali u slučaju trofaznog voda u simetričnom režimu dolazi do delimičnog poništavanja pojedinih komponenti magnetne indukcije koje potiču sa različitih faza.

Mora se naglasiti bitna razlika između električnog i magnetnog polja nadzemnih vodova. Elektivna vrednost električnog polja u okolini nadzemnih vodova funkcija je radnog napona i praktično je nepromenljivo u toku vremena. Naprotiv, magnetna indukcija jako zavisi od struje vodova i menjaja se u funkciji opterećenja voda. U slučaju nesimetričnog pogona voda gde se deo struje vraća kroz zemlju, magnetna indukcija može značajno da poraste.

Na slici 1.4.4 prikazan je tipičan oblik električnog polja na visini 1.8 m iznad zemlje, kada se posmatra na pravcu koji je normalan na osu voda. Fazni provodnici su na visini 12 m iznad zemlje, a na međusobnom rastojanju od 6 m pri horizontalnom rasporedu provodnika. Nazivni napon voda je 400 kV.
Slika 1.4.2: Električno polje cilindričnog opterećenja

U slučaju cilindričnog opterećenja koje se smatra beskonačno dugačkim, izraz za intenzitet električnog polja dobija se na osnovu Gausove teoreme u sledećem obliku:

\[E = \frac{\lambda}{2\pi r} \]

gde oznaka \(\lambda \) pretstavlja podužno električno linijsko najelektrisanje izračeno u C/m.

Može se uočiti da u slučaju linijskih beskonačno dugačkih najelektrisanja električno polje je obrnuto srazmerno rastojanju. Ovaj slučaj se javlja kod nadzemnih vodova visokih napona.

Pošto su visokonaponski nadzemni vodi za prenos i distribuciju električne energije trofazni, u slučaju simetričnog režima zbir električnih linijskih opterećenja unutar provodnika po pravilu je jednak nuli. Na slici 1.4.3 je skiciran trofazni nadzemni vod sa označenim najelektrisanjima po fazama A, B i C u prisustvu čoveka u dva položaja.

Slika 1.4.3: Trofazni nadzemni vod sa označenim najelektrisanjima po fazama

Električna najelektrisanja po fazama A, B i C su:
1.5. Opadanje električnog polja i magnetne indukcije sa rastojanjem

Intenzitet elektromagnetnih polja veoma brzo opada sa udaljenošću od izvora polja. Na primer, u slučaju tačkastog izvora električnog polja, intenzitet električnog polja opada sa kvadratom rastojanja, kao što je prikazano na slici 1.4. (\[1.4.1\])

\[E = \frac{Q}{4\pi\varepsilon_0 r^2} \]

gde su: \(E\) – intenzitet električnog polja u \(V/m\)
\(Q\) – električno opterećenje izraženo u \(C\)
\(\varepsilon_0\) – dielektrička konstanta vazduha
\(r\) – rastojanje izraženo u \(m\) izmedju tačkastog opterećenja i tačke u kojoj posmatramo polje.

Na osnovu izraza (1.4.1) možemo zaključiti da se intenzitet električnog polja smanjuje sa kvadratom rastojanja kada se izvor električnog polja može smatrati tačkastim. Električno polje se jednostavno zaustavlja postavljanjem provodnog ekrana između izvora polja i objekta koji se štiti. Provodni ekran se pravi od metalnih folija, a može se praviti i od tkanine sa upredenim metalnim vlaknima.

U domaćinstvima su veoma retki izvori jakog električnog polja industrijske učestanosti, pošto je ta vrsta polja prouzrokovana uređajima koji rade sa visokim naponima. Jedini gredaj sa visokonaponskim izvorima bio je TV prijemnik sa katodnom cevi i računarski monitor, koji se danas narušaju.

Znato češće se pojavljuju polja električna polja industrijske frekvencije usled linijskih električnih opterećenja, kao na slici 1.4.2.
WHO izveštaj

se koriste u medicinskoj dijagnostici, preko visokofrekventnih polja koja se koriste u telekomunikacijama, do niskofrekventnih polja od elektroenergetskog napajanja.

1.4. Osnovna podela elektromagnetskih zračenja

Osnovna podela elektromagnetskih polja je na dve glavne grupe koje se veoma razlikuju po posledicama dejstva na živi svet. To su:

- Jonizujuća elektromagnetna zračenja
- Nejonizujuća elektromagnetna zračenja

Jonizujuća elektromagnetna zračenja su zračenja izuzetno visoke frekvencije, koja imaju veliku koncentraciju energije i mogu da izazivaju kidanje međumolekularnih veza. Zbog kidanja međumolekularnih veza pod dejstvom jonizujućeg zračenja može da dođe do promena u dugačkim molekulima unutar gena što izaziva promene u naslednim osobinama i naziva se mutacijama. Zbog toga su jonizujuća zračenja izuzetno opasna jer ne ostavljaju posledice samo na izloženu jedinku, već na sve buduće generacije koje nasleduju osobine izložene jedinike.

Izvori jonizujućih zračenja su:

- Kosmički zraci, kao prirodni izvor jonizujućeg zračenja
- Gama zraci, koji nastaju kao rezultat nuklearnih reakcija. Gama zraci mogu nastati u prirodi prirodnim raspodom radioaktivnih materija u zemljinoj koriti ili veštačkim putem, primenom radioaktivnih materijala u tehnici, medicini ili u vojne svrhe.
- X - zraci ili Rengenski zraci koji se koriste u medicinskoj i tehničkoj dijagnostici

Nejonizujuća zračenja su znatno manje opasna i njihovo fiziološko dejstvo još uvek nije potpuno istraženo. Ukoliko je frekvencija elektromagnetnog zračenja manja, manja je gustina energije i fiziološki efekti su slabiji.

Prema frekvencijama nejonizujuća elektromagnetna zračenja se dele na:

1. Elektromagnetna polja jako niskih frekvencija (Extremely low frequencies ili ELF polja) u opsegu od 0 do 300 Hz. Glavni izvor ove vrste elektromagnetskih polja su uređaji koji proizvode, prenose i koriste električnu energiju industrijske učestanosti od 50 Hz ili 60 Hz.
2. Elektromagnetna polja srednjeg opsega frekvencija (Intermediate frequencies ili IF) su frekventnog opsega od 300 Hz do 10 MHz
3. Elektromagnetna polja radio frekvencija (RF) frekvencija od 10 MHz do 300 GHz

Uticaj elektromagnetnog polja na živi organizam ne zavisí samo od intenziteta elektromagnetnog polja već i od frekvencije, jer se energija elektromagnetnog polja povećava sa frekvencijom.